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Abstract. The kinematical description of a classical system having a linear phase space can 
be quantised if a complexification is given over the symplectic space that supports the 
description; indeed, a complexification determines a Segal quantisation. The question of 
the uniqueness of the Segal quantisation arises since the quantum descriptions constructed 
through different Segal quantisations need not be equivalent. If the classical description 
contains also a symmetry group (represented by linear symplectic transformations; this 
means that we deal with systems having linear dynamics only), we can require the 
complexification to determine a Segal quantisation that also quantises the symmetry group. 
We show that this requirement determines uniquely the complexification, and therefore the 
Segal quantisation, provided the symmetry group fulfils a (real) irreducibility condition. We 
apply this uniqueness criterion to the free neutral scalar field. 

1. Introduction 

The connection between the classical description of a physical system and its quantum 
theoretical one has been investigated from many points of view. 

A formally well defined approach to this problem, at least for the classical systems 
with a linear phase space, consists in using a linear symplectic space as the basic 
framework of the classical description and in performing the quantisation by means of a 
so-called Weyl system; this associates (for precise definitions see below) with each point 
of the symplectic space of the classical description a unitary operator on the Hilbert 
space of the quantum one. In this way an algebra can be generated, called the Weyl 
algebra, which, at least if suitable localisability requirements are introduced, is usually 
interpreted as the algebra of observables of the quantum system. 

It is well known that: 
(i) when the symplectic space is finite dimensiona1 the existence problem for a Weyl 

system gets completely settled by the ‘Schrodinger representation of the canonical 
commutation relations (ccR)’; the uniqueness problem is also settled by the von 
Neumann result, at least from a kinematical point of view; for what might be called a 
dynamical non-uniqueness (or a non-equivalence of different representations) see 
Gallone and Sparzani (1979). 

(ii) For infinite dimensional systems the existence problem is not completely solved 
in the general setting given above. It is well known, though, that if one starts with a 
complex Hilbert space and looks at its underlying symplectic structure as the 
fundamental structure, then there are standard ways of building up Weyl systems, and 
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hence representations of the CCR; e.g. the Fock-Cook space is constructed and second 
quantisation-also called Segal quantisation (Reed and Simon 1975)--provides an 
explicit representation; it is also well known that there is a very heavy non-uniqueness 
here unless strong conditions are imposed. 

A crucial point where non-uniqueness may, and does, enter into the picture comes 
when one, in order to be able to follow a pattern such as the one mentioned in (ii), tries 
to look at the symplectic space as a complex Hilbert space. It is clear that the only 
possible meaning of the last sentence is that one has to graft into the real symplectic 
structure a complex Hilbert one, and this is accomplished essentially by defining what is 
to be the scalar multiplication by the imaginary unit (complexification). 

In this paper we consider a possible situation in which the choice of the 
complexification is unique. Indeed, we consider the special class of the physical systems 
whose symmetry groups are classically represented by linear symplectic trans- 
formations (in particular their dynamic evolutions are linear). For such systems, 
conditions for the symmetry groups can be sought that lead to a unique 
complexification. A neat result has been obtained by Kay (1979), who proved that the 
requirement that the ‘first quantised’ energy be strictly positive is sufficient to ensure the 
uniqueness of the complexification. 

In this paper we look for a condition that, being concerned with a classical 
description of the system, naturally enough bears upon the purely classical side of the 
symmetry group, i.e. its being represented by linear symplectic transformations, 
without any quantum-like request (as for instance the positivity of the ‘first quantised’ 
energy)f. What we find is that the (real) irreducibility of the mentioned representation 
implies the uniqueness of the complexification. Note that the complex irreducibility 
(which anyway could be defined only after the complexification has been set in) would 
not be sufficient, as trivial examples show. 

It is worth pointing out explicitly that the uniqueness problem we are considering 
here concerns the Segal quantisation, i.e. the uniqueness of the complexification, and 
not the general problem of the quantisation of the physical systems with a linear 
dynamics. For results concerning the uniqueness (and the lack of uniqueness) of the 
general (algebraic) quantisation of these systems, see e.g. Segal (19621, Weinless 
(1 969). 

2. Weyl systems 

A linear (to be understood in what follows) symplectic space is a pair (A, B), where A is 
a real vector space and B is a symplectic form on A, i.e. a non-degenerate antisym- 
metric bilinear real form on A. An %-valued Weyl system over a symplectic space 
(A, B )  is a map W from A into the group U(%) of the unitary automorphisms of a 
complex separable Hilbert space %, satisfying: 

(a) Vm, nz’ E A, ~ ( m )  ~ ( m ’ )  = e x p ( b ( m ,  m’)) ~ / n z  + m’), 
(b) the map R 3 t~ W( tm)  E U(%?) is weakly continuous, Qm E A. 

+ It must be understood, however, that not every symplectic space is suited for Segal quantisation: as very 
little is known on  the problem of the existence of complexification operators (see below) for a general 
symplectic space, we must at least demand that the symplectic space we use admits a complexification 
operator. Further, the number of the a priori classically admissible symplectic spaces with complexification 
operators is reduced by the choice of what the complexificaticn operator should look like. And this is a 
‘request’ that may stem from a sort of fore-knowledge of what we want as a quantised system. See also the 
footnote in 5 4. 
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For Weyl systems, unitary equivalence and irreducibility are defined in the natural 
way. Indeed, two Weyl systems W and W‘ over the same symplectic space (A, B )  are 
said to be unitarily equivalent if a unitary map V exists from the Hilbert space of W 
onto the Hilbert space of W’ such that V m  EA, VW(m)V-’= W’(m).  Also, a Weyl 
system W is said to be irreducible if in its Hilbert space no non-trivial closed linear 
subspaces exist that are left invariant by the range of W. 

If a Weyl system W is given over a symplectic space ( A , B ) ,  a C* algebra of 
operators along with a mapping from A into it can be constructed in an essentially 
unique way as follows. Let V be a finite dimensional subspace of A and let d v  be the 
W* algebra generated by the image with respect to W of V. The norm-closure d( W )  
of U {dv; V finite dimensional subspace of A} is a C* algebra of operators and W is a 
mapping from A into sP( W ) .  Also the following Segal’s uniqueness theorem holds 
(Segal 1959, see also §lawny 1972): if W’ is another Weyl system over (A, B ) ,  there 
exists a unique isomorphism T between d (  W) and d(  W’) that carries W into W‘,  i.e. 
such that V m  E Ju, T (  W ( m ) )  = W‘(m) .  This amounts to uniqueness up to isomorphisms 
of the pair (sP( W ) ,  W ) ,  which is called the Weyl algebra over (A, B). It is worth pointing 
out that by no means does 7 need to be unitarily implementable, i.e. it may happen that 
the Weyl systems W and W’ are not unitarily equivalent (also if they are related by 7 in 
the way seen before). Only if A is finite dimensional and W and W’ are both 
irreducible (the statement can be modified so as to dispose of this condition, though) is it 
always true that T is unitarily implementable; in this case, Segal’s uniqueness result is 
simply a rephrasing of the von Neumann uniqueness theorem. 

We shall assume that a symplectic space (A, B )  is the proper framework for the 
kinematical description of a classical system. It is then natural to assume that a linear (to 
be understood in what follows) symmetry of the classical system is represented by a 
symplectic transformation of (A, B ) ,  i.e. a linear automorphism of A that preserves the 
form B. The group of such transformations will be denoted by Aut(&, B) .  

We shall also assume that a Weyl system over (A, B )  provides a quantisation of the 
classical kinematical description (A, B ) .  ’Then a classical symmetry S also becomes 
quantised. Indeed, W 0 S is still a Weyl system over (A, E?) because S E Aut(& B). 
Thus, owing to Segal’s uniqueness theorem, there is a unique automorphism rS of 
d (  W )  that carries W ( m )  into W(Sm) and the automorphism r.9 (which does not need to 
be unitarily implementable) is considered as the quantisation of the classical symmetry 
S.  

The analysis of symmetry groups and their quantisations can now be made in a 
similar way. A classical symmetry group is a continuous symplectic representation in 
(A, B )  of a Lie group G, i.e. a group homomorphism 

G 3 g ++ Sg E Aut(&, B ) ,  

such that G 3 g - B(m, S,m’) E R is a continuous function, Vnz, tn’ E A. From the 
results obtained above for a symmetry, it follows that a group homomorphism g - T ~  of 
G into the group of the automorphisms of the C* algebra d ( W )  exists such that 
W(S,m) =1 ~ ~ ( W ( r n ) ) .  ‘The classical symmetry group g - S ,  is naturally considered to 
be quantised by the homomorphism g i-+ T ~ .  Indeed, this homomorphism is the quan- 
tisation of the classical symmetry group considered, since its algebraic uniqueness is an 
easy consequence of Segal’s uniqueness theorem: if W‘ is another Weyl system over 
(Ju, B )  and 7; the automorphism of d (  W’)  such that W‘(S,m) = T ; (  W’(m)),  then the 
relation rg -- ~ - ‘ T ; T  holds if T is the isomorphism of d (  W )  onto d (  W‘)  that carries W 



1344 F Gallone and A Sparzani 

into W'. Therefore, through Weyl systems we can quantise a classical symmetry group 
as a group of C* algebra automorphisms in a way which is essentially unique. 

The ultimate meaning of what precedes is as follows. Once a Weyl system W over 
(A, B) is given, it is possible to construct the Weyl algebra over (A, B), i.e. a C* algebra 
&!(A,~) (any C" algebra isomorphic with &!( W ) )  along with a labelling w of its elements 
by the elements of A (w is what W becomes through the isomorphism of d(  W )  with 
& ! ( A , ~ ) ) .  Moreover, a classical symmetry group gets quantised through automorphisms 
of &!(A,~). Remarkably enough, all this can be done also if no Weyl system is given over 
(A, B), i.e. the Weyl algebra (&!(A,B), w) can still be defined (Segall956) and a classical 
symmetry group can be quantised by automorphisms of Indeed, a Hilbert space 
for the quantised system is derived from using the GNS theorem, and the 
existence of a Weyl system over (A, B) is equivalent to the existence of a 'regular' state 
of &!(A,B) (Segal 1959, 1961, 1963). This shows how the quantisation of a classical 
description can be performed in purely algebraic terms, with no Hilbert space playing a 
fundamental role (the occurrence of Weyl systems is reduced to the existence of 
particular states of the Weyl algebra). Besides, also if a Weyl system W is being used 
and a classical symmetry group is being quantised in its framework through auto- 
morphisms T~ of &!( W ) ,  the automorphisms T~ need not be unitarily implementable. 
Nevertheless, if a classical symmetry group is given over (A, B ) ,  it may be important to 
examine when it is possible to find a Weyl system W such that T~ is unitarily 
implementable by means of a continuous unitary representation of G in the Hilbert 
space in which W is defined. Indeed, if this is the case, we are able to represent the Lie 
algebra of G by means of self-adjoint operators acting in the Hilbert space where the 
quantum kinematical description is given (Nelson 1959, GHrding 1960). 

In other words, it appears that-also if the foundations of the theory of quantisation 
can be expressed in a purely algebraic framework-it can be desirable to be able to 
construct, over a symplectic space (A, B), a Weyl system and, for a classical symmetry 
group G 3 g HS, E Aut(A, B), a continuous unitary representation that quantises it. 
Namely, we are led to look for a Weyl system W over (A, B )  and a continuous unitary 
representation U of G in the Hilbert space where W is defined such that Vm E .U, V g  E 

G, W(S,m) = U(g)W(m)U(g)- ' .  

3. Segal quantisation 

A method to construct Weyl systems and at the same time to quantise classical 
symmetry groups by continuous unitary representations will be explained in this 
section. First, we recall a few basic facts about second quantisation; for more details, 
see e.g. Reed and Simon (1975). 

Let YL be a complex separable Hilbert space and let .CFs(X) be the symmetric Fock 
space over YC, i.e. Ps(X) := 0 :=o YL?), where X?' is the n-fold symmetric tensor 
product of X. Denoting by a ( k )  and a+(k) ,  with k E X, the annihilation and creation 
operators defined in the usual way in Ps(YL), the operator ( l / f i ) ( a ( k ) + a ' ( k ) )  is 
essentially self-adjoint; setting, for k E YL, 

~ ( k )  := exp[(i/JZ)(a(k) + a+(k) ) l  

(where the bar means closure), the mapping from YL to the unitary automorphisms of 
Ps(X) given by k H W ( k )  is called the Segal quantisation over X and satisfies the 
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following conditions: 
(a) W ( k )  W ( k ‘ )  = exp[-(i/2) Im(klk’)] W ( k  +IC‘), V k ,  k ’ E  YC, 
(b) the map R 3 t - W(tk)  E U(gs(YC)) is weakly continuous, Vk E YC. 

Also, if S is a unitary operator in YC and r(S) its second quantisation, the relation 
r(S) W(k)r (S ) - l  = W(Sk)  holds, V k  E YL Finally, if g-S, is a continuous unitary 
representation of a topological group G in YC, the map G 3 g -r(Sg) E U(.9s(YL)) is a 
continuous unitary representation of G in 9ZS(YC). 

Now, notice that -Im(k lk’) is a symplectic form on the real vector space YC (when we 
say so, we mean to consider in YC the real vector space structure underlying the complex 
Hilbert space structure of YC); the pair (Yl, -Im( - 1 )) will be called the symplectic space 
generated by the complex Hilbert space YL Also, the Segal quantisation over YC defined 
above is an 9?s(YC)-valued Weyl system over (YC, -Im(+ I . ) ) ,  as can be easily seen. 

So, through Segal quantisation, a Weyl system can actually be constructed over a 
symplectic space (A, B )  when a complex Hilbert space YC can be found such that (A, B )  
is the symplectic space generated by YC. Moreover, since the restriction of a Weyl 
system to a real vector subspace is still a Weyl system, this procedure covers also the 
case when for the symplectic space (A, B )  the following conditions hold: 

(i) A is a real vector subspace of YC, which means that A can be identified with a 
subset of YC and the real vector operations induced on A by YC coincide with those 
already existing on A, 

(ii) Vm, m’ E A c YC, B(m, m’) = -Im(mlm’). 
Let us now suppose, as it is in our opinion the most basic situation, we start with a 

real symplectic space (A, B) and also suppose that a (real) linear operator J is given on 
A which satisfies the following conditions: J2 = -U; Vm, m’ E A, B(Jm, Jm’) = 
B(m, m’); B(Jm, m)>O iff m # 0. Such an operator J is called a complexification 
operator over (A, B )  since by setting: a m  := ((Re a) I+  (Im a ) J ) m ,  V a  E C (the 
complex plane), Vm E A, and (mlm‘) := B(Jm, m’) -iB(m, m‘), Vm, m’ E A, a complex 
inner product space structure is defined over the set A. Moreover, its completion A., is 
a complex Hilbert space for which the conditions (i) and (ii) above hold with respect to 
A, that is the symplectic space generated by A., contains (A, B). 

In conclusion, a way of constructing a Weyl system over a symplectic space (A, B) 
consists in finding a complexification operator J over (A, B),  constructing the Segal 
quantisation over AJ and restricting it to A. Denoting by $ ( Y , B )  the family of the 
complexification operators over (A, B), nothing can in general be said about what 
$(A,B) contains. Indeed, there is a bijection between$(A4,B, and the class of the complex 
Hilbert spaces such that the condition (ii) above holds along with 

as is very easy to see. If, however, $(A,B, is no: empty, it usually contains plenty of 
complexification operators, since if J E $ ( ~ ~ , ~ )  and S E Aut(&, B ) ,  then S -  ‘JS E$(A~,B). 

Of course, there is no need for two Weyl systems constructed through Segal quan- 
tisation from two different elements of to be unitarily equivalent. Indeed there 
are criteria for this to happen (Shale 1962, Van Daele and Verbeure 1971). 

From what was seen before, it is clear that in order for the quantisation of a classical 
symmetry, i.e an element S of Aut(A, B),  to be unitarily implementable within the 
quantum kinematical description set up by a Weyl system W defined through the Segal 
quantisation by a complexification operator J,  it is enough that an extension of S exist to 
a unitary operator in the complex Hilbert space AJ. For this to happen, it is necessary 
and sufficient that S commute with J. If this is the case, indeed, r(S) (where S is the 
closure of S in the complex Hilbert space A.,) is a unitary operator in 9?(AJ) such that 

(i’) A is a dense complex vector subspace of the complex Hilbert space, 
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V m  E A, r(S) W(m)T(S)- l  = W(Sm).  Also, if G 3 g-S ,  E Aut(A, B) is a classical 
symmetry group such that S, commutes with J for each g E G, the mapping G 3 g H s, E 

U(AJ) is a continuous unitary representation, whence G 3 gHr(3,) E U(2Fs(AJ)) is a 
continuous unitary representation of G in ,Fs(AJ) which quantises the classical sym- 
metry group, i.e. such that Vm E A, Vg E G, W(S,m) = rig,) W ( w ) r ( S J 1 .  

If for a symplectic space (A, B) we are given the set $(a,.s) of the complexification 
operators and a classical symmetry group g HS,, it may happen that for no J E $(A,Bl do 
we have [J ,  S,] = JS, - S d  = 0, or that this happens for some elements of $(A,Bl  or for 
just one element of $(&Bj. Jn a previous paper (Gallone arid Sparzani 1979) a 
symplectic space was examined for which the classical symmetry groups divided into 
two classes, according to the existence of no or just one complexification operator that 
commuted. 

In the following section we shall give a criterion for the uniqueness of a 
complexification operator that commutes with a classical symmetry group, granted its 
existence. 

4. A theorem of uniqueness 

As was explained in the previous sections, the kinematical description of a classical 
system given through a symplectic space (A, B )  is quantised by the second (i.e. Segal) 
quantisation over ,I&, once a complexification operator over (A, B), i.e. an element J of 
$ ( d g , B ) ,  is given. Also, the Segal quantisations that can be constructed starting from two 
elements of $a(JM,B)  need not be unitarily equivalent. If, however, the classical descrip- 
tion we start from contains also a symmetry group, i.e. a homomorphism of a group into 
the group Aut(&, B) of the symplectic transformations of (A, B ) ,  we can ask to what 
extent the requirement that the symmetry group be quantised by the second quan- 
tisation over determines J within $ ( , M , B j .  We shall presently show that this 
requirement determines J uniquely, provided the symmetry group fulfils a (real Hilbert 
space) irreducibility condition. 

Using this criterion, we shall see that the symplectic space of the real solutions of the 
positive mass p and spin zero Klein-Gordon equation, where the symplectic form is the 
Wronskian of two solutions and the symmetry group is the PoincarC group, admits of a 
unique complexification operator. The action of the Poincar6 group we assume is the 
obvious one q!I (~ )+-++(~ i - ' (x  -- (II j ) ,  where q!I is a solution and (a, A) an element of the 
group. The quantum system we get through the thus uniquely fixed complexification 
operator is the relativistic neutral free quantum field with spin zero and mass p,  

Before stating the theorem in which the criterion mentioned above is proved, let us 
point out that, once an element J of $(A,Bj  is given, a (real linear) operator A on A is 
also a complex linear operator in A, if and only if [A,  J] = 0. In what follows we shall 
deal with operators that have this property and others that do not. 

Another useful remark is the following. Let g H S, be a homomorphism of a group 
Ci into the group Aut(&, B) (no continuity condition for g HS, is required to prove ?he 
theorem), and J an element of $(JM,Bl such that Vg E G, [S, ,  J ]  = 0. Then S, is a complex 
linear bounded operator in with domain A ;  we shall denote by (S,), its bounded 
extension to .AJ, which is easily shown to be a unitary automorphism of the complex 
Hilbert space Ad,. The mapping S,, defined by g - S J ( g )  := (SR),, is a unitary represen- 
tation of G in A&, as is straightforward to check. 

We can now state and prove our main result. 
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Theorem. Let g HS, be a homomorphism of a group G into the group Aut(& B). Let J 
be an element of satisfying: 

(i) V% E G, [S, ,  J ]  = 0, 
(ii) SJ is real irreducible, i.e. no closed non-trivial real linear subspace exists in AJ 

that is left invariant by SJ. 
If K is an element of $(&,B)  such that Vg E G, [S, ,  K ]  = 0 ,  then K = J. 

Proof. It is convenient to divide the proof into three parts. 
( a )  Here, we gain control of the real linear operator K-we do not even know 

whether it is bounded-deriving a relation between J and K. In this first part we shall 
not fully exploit assumption (ii); indeed, we shall use just the complex irreducibility of 
SJ, which is implied by its real irreducibility but is in general a weaker condition. 

Define the operator A := [J, K]+=JK + KJ in AJ;  A is complex linear as it 
commutes with J, and its domain is A. A straightforward calculation shows that 
V m  EA, \ ~ A r n ~ ~ ~ & ~ ~ m ~ ~  (11 * 11 means the norm of AJ);  therefore A-' exists and is a 
bounded operator in AJ. Consider now the complex linear operator C, defined as the 
closure of A-' in AJ : C is the bounded extension of A-' to E A ,  the closure in & of the 
range RA of A.  First, notice that R A  = AJ; in fact RA is invariant under SJ as 
Vg E G, [Sg, A ]  = 0, and this implies that also EA is invariant under S J ;  from the 
complex irreducibility of SJ we have either RA null or RA = AJ ; since A-' exists, we 
have Further, notice that C commutes with S J ;  in fact V ~ E G ,  from 
[S, ,  A ]  = 0 we derive A-'S,rRA = S,A-' (where IRA means restriction to RA);  
moreover, C(S,)J is the bounded extension to J U ~  of the left-hand side of this equality 
and (S,)JC is the same for the right-hand side; therefore C(S, ) ,  = (S,),C. Thus, 
because of the complex irreducibility of SJ and the Schur theorem, C is a complex 
multiple of the identity operator onAJ, and this implies that a non-null complex number 
(Y exists such that A = a71 (the identity operator on A). 

It is now easy to check that V m  E A, Im(Am1m) = 0 (( 1 * )  means the inner product 
of AJ); therefore A is a symmetric operator in AJ, whence cy is a real number. We have 
thus proved that a non-null real number exists such that the relation 

KJ+JK =cy71 

between J and K holds. 
( b )  We prove here an easy lemma. 

Lemma. Under the same assumptions as in the theorem, but for the possibility of 
weakening the real irreducibility of SJ to complex irreducibility, the following three 
statements are equivalent. 

(i) [K,JI=O, 
(ii) K = J ,  
(iii) cy = -2, where cy is the real number that appears in the relation (1) above. 

Proof of the lemma. The assumptions of the theorem (with the possibility of weakening 
the real irreducibility of SJ to complex irreducibility) play a role only inasmuch as from 
them relation (1) above follows. Indeed, the proof follows from (1) and from the 
properties of the complexification operators. (i) 3 (ii): from (i) and (l), -2J = aK 
follows, whence K = i J ;  as K = -J is impossible, (ii) follows. (ii) 3 (iii): substitute K 
for J in (1). (iii)+ (i): a lengthy but straightforward calculation, in which several times 
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use of (1) is made, leads to the equality 

V m  EA, INJ, ~ I m i i ’ =  ( ~ ~ - 4 ) l I m i I ~ ,  (2) 

which shows that (i) follows from (iii) and completes the proof of the lemma. 
(c) Now, we conclude the proof of the theorem; here full use is made of assumption 

(ii). 
First, observe that ~ ~ - 4 2 0  follows from relation (2) above. Now, define the 

operator T := ( Q ~ - ~ ) ’ / ~ J - [ K ,  J] in AJ, which is a priori only real linear and whose 
domain is A. From (2) above we see that [K, J] is a bounded real linear operator in AJ ; 
thus, T is bounded and we can consider its bounded extension F to AJ. A straightfor- 
ward computation, in which use is made of relation (1) derived in part ( a )  and of the 
equality J 2  = -U ,  shows that T 2  = 0 (the null operator on A), whence also F2 = 0 (the 
null operator on AJ),  Notice now that Vg E G, [S,, TI = 0 by the assumptions of the 
theorem and therefore, by an argument already used in part ( a ) ,  F ( S g ) J  = ( S g ) ~ F .  This 
implies that the kernel Ker r  of F, which is a closed real linear subspace of AtJ, is left 
invariant by SJ, and therefore either K e r r = A J  or Kerr  is null; but this last condition 
cannot hold, because F2 = 0; therefore = 0, whence T = 0, i.e. ( c u ~ - ~ ) ” ~ J  = [K, J ] .  
Notice now that [[K, 31, J], = 0 follows from J 2  = -1; thus ( C Z ~ - ~ ) ’ ’ ~  = 0, whence 
[K, J] = 0. From this equality and from the lemma proved in ( b )  we get K = J. The 
proof of the theorem is complete. 

As we have just seen, the real irreducibility of SJ (as opposed to the weaker complex 
irreducibility) is used only in (c) of the proof of the theorem. However, its role is crucial 
and if it was altogether replaced by complex irreducibility the theorem would be false, 
as the following easy example shows (Gallone and Sparzani 1979). Take A = R2 and B 
the canonical symplectic form on R2; for every triple ( y ,  77, p )  E R3 the mapping 

s ( y , T , p )  ._ cos w t  - 2P (sin w d l w  2 y(sin w t ) / w  
f *- I -2T(sinwt)/w coswt+2p(sinwt) /w/? 

where 

2(77Y - P 2 Y 2  i f q y - - p 2 z 0  
if 77 y - p2 < 0 I 2i(p - 77 y )  * I 2  

w := 

and (sin wt) /w means t when w = 0, is a continuous symplectic representation of the 
group R in this symplectic space, and there is no other continuous symplectic represen- 
tation of R. A complexification operator exists that commutes with Sjy3q,p) if and only if 
either y = 77 = p = 0 or yq - p 2  > 0. In the latter case, t~ SjY3‘I3”) is real irreducible and 
indeed-in agreement with the theorem-there is just one complexification operator 
that commutes with it. On the other hand, t -  Sjo3’,’) is the trivial symplectic represen- 
tation and commutes with all the (infinitely many) complexification operators; however, 
it is complex irreducible (but not real irreducible!) in AJ for any complexification 
operator J. This shows that the condition of real irreducibility in the theorem cannot be 
weakened to complex irreducibility. 

As a further comment, it is worth mentioning that in the course of the proof we had 
to be careful in dealing with the complexification operator K also because an element of 
$j(JI1,B) may happen not to be continuous in the topology defined over A by another 
element of $j(~11,~),  as the following example shows. Let X be a complex separable 
Hilbert space and { u , } , ~ ~  an orthonormal basis in X; {un, iu,},EN is a real orthonormal 
basis. On the algebraic linear subspace 9 spanned by this basis, define the real linear 
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operator J1 setting J1u,  = -inun and Jl(iu,) = ( l / n ) u , ;  it is easy to see that-over the 
symplectic space (9, B ) ,  where B is the imaginary part of the inner product-J1 is a 
complexification operator and so is the operator J2  defined as the multiplication by i. 
Now, J1 is not continuous in 9J2 = X and 9JI # 9J2. Of course, afterproving the theorem, 
we know that the complexification operator K of the theorem is well behaved in AI: 
indeed, K coincides with J !  

We shall now make use of the uniqueness result of the theorem to prove that the 
relativistic free neutral scalar field with positive mass admits of a unique Segal 
quantisation. In the symplectic space (A, B )  that describes the classical kinematics of 
this system, A is a set of real solutions to the positive mass p and spin zero 
Klein-Gordon equation (U + p2)4 (x, xo) = 0; the symplectic form B is the Wronskian 
of two solutions 

B ( 4 , ~ )  := J t i +  - 44)  dx, 
x o = o  

which means B is the Poisson bracket of the classical system with canonical variables 
4(x)  := 4(x, 0), v ( x )  := 4(x, 0); the form B is uniquely determined, up to a scalar 
factor, by the condition that it be invariant under the natural action of the restricted 
Poincart group PI on A:  

d ( X ) * ( S ( a , A ) 4 ) ( X )  := d'(il-l(x - a ) )  

where (a ,  A) E P!. A complexification operator over (A, B )  is defined by the mapping 

(&4)x0=o*(D4, -D-ld)xn=o 
where D := ( - A + P ~ ) " ~ ;  in fact this defines an operator J on A, since the pair 
(4, $)xn=o determines a unique solution of the wave-equation, and also J E $ ( A , ~ )  can 
be easily proved?. Now, P I  can be considered a classical symmetry group for the free 
field since (a ,  A ) H S ( ~ , * )  is a continuous symplectic representation in (A, B )  of PI. 
Moreover it can be shown that V ( a ,  A) E PI, [S(a,A), J] = 0; therefore, through the 
second quantisation defined by J,  both the classical kinematical description based on 
(A, B )  and the classical symmetry group (a ,  A) H S(a,,t) can be quantised. Indeed, the 
quantum system that is thus obtained is the relativistic neutral free quantum field with 
spin zero and mass p. 

The problem naturally arises whether this quantum system is the only one that can 
be obtained through second quantisation from (&, B )  and S(a.,i), i.e. whether an 
element K of B;(&,B, that commutes with S(a,A) for each (a ,  A) must coincide with J. The 
theorem stated above proves that this is indeed the case, since the unitary represen- 
tation SJ of P I  in AJ defined by S(a,.k) and J is real irreducible. This can be either seen 
directly or, using a result of Weinless (1969, remark 1.5), derived from the fact that SJ is 
complex irreducible and the self-adjoint generator of the time translations in SJ is 

t From a purely classical point of view, several spaces of solutions could be chosen for Ju in an equally natural 
way. Say, the space A' of solutions whose Cauchy data m e  infinitely differentiable and have compact support, 
or the space &"of solutions whose Cauchy data have Fourier transforms with these properties (&"is the space 
of the so-called regular wave-packets). However, our prescription for J (which actually comes from 
fore-knowledge of the quantum situation) does not make sense on  A', while it does on A", which can 
therefore be taken to be A, Of course, there are other choices for A (e.g. the Hilbert space A; or its subspace 
of the 'finite energy solutions') that make B and J well defined. This is an example of what is described in the 
footnote in 6 1. 
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strictly positive: indeed, SJ is (a realisation of) the mass p and spin zero continuous 
unitary irreducible representation of 91. 

It is interesting to compare our result with that of Kay (1979). The well known 
complexificatim of the free field has three properties, 

(i) Time translations are represented as a unitary group. 
(ii) The whole Poincari? group is represented (real irreducibly) as a unitary group. 
(iii) Positive energy. 
Essentially, Kay shows that ii) and (iii) alone imply uniqueness (and hence (ii)). Our 

result is that (i) and (ii) alone imply uniqueness (and hence (iii)). 
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